Callbacks and Interacting Objects

CS 5010 Program Design Paradigms
"Bootcamp”
Lesson 10.8

@ © Mitchell Wand, 2012-2014
s 1 his work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

The agreement between publisher and
subscriber

* The publisher and subscriber must agree on a
protocol for exchanging messages.

* The protocol consists of:

— A publisher-side method for an object to subscribe
to the messages

— A subscriber-side method that the publisher can
call to deliver the messages

— An agreement on what messages mean and how
they are represented. | information and its

Representation as Data
(again!!)

Doing pub-sub without relying on a
common method name

You might have several different classes of subscribers,
who want to do different things with a published
message.

Maybe you don't know the name of the subscriber's
receiver method

Solution: instead of registering an object, register a
function to be called.

—f : X -> Void where Xisthe kind of value being
published

To publish a value, call each of the registered functions
— It's a callback!

These functions are called delegates or closures.

No more update-wall-pos method

(define SBall<%>
(interface (SWidget<%>)

5——Lhat—> Void

55——EFFECT—updates—theball-scached—valueofthe
11" "

—update-wall=pos

))

The Wall keeps a list of callback
functions

(define Wall% (define/public (after-drag mx my)

(class* object% (SWall<%>) (if selected?

e (begin
(set! pos (- mx saved-mx))
55 the list of registered balls (for-each
s5—ListOf(Ball<%>) (lambda (callback)
(field [balls empty]) {(send b update-wall-pos pos)
(callback pos))

;5 the list of registered callbacks))
53 callbacks this))

55 ListOf(Int -> Void)
(field [callbacks empty])

35 (Int -> X) -> Int

’ FFFECTS registers the given The wall keeps a list of callback
33 RETURNS: the current position functions instead of a list of
HH of the wall
(define/public (register c) Balls. When the wall moves, it
(b‘(f::! callbacks calls each registered function
(;c)ms c callbacks)) instead of sending a message
pos

to each registered ball.

alll
balll W

Publishing through a delegate I

(register f1)
callbacks =
(list f1)

after-drag

f1 \ wall-pos = 250
[(1ambda (n) (set! ? n))]

(publish 250)

p ~ (f1 250)
250

wall
wall-pos ;L/ T

- /

=
nonu

Whose wall-pos?

* When we write
(lambda (n) (set! wall-pos n))

we are referring to the wall-pos field in this
object.

* The next slide shows a similar diagram
illustrating what happens when there are
two balls in the world.

* Each ball has its own delegate, which refers
to its own wall-pos field.

f1

f2
\{(hmbda (n) (set! o n))J

ball2

250

(lambda (n) (set! , n))J

W
wall-pos

o

\

walll
250

/

balll ball2 walll
D (register f1)
g U]
D (register f2)
g U]
subscribers =
(list f2 f1)
after-drag
wall-pos = 250

e

> .
w = walll

wall-pos =

\ %

(publish 250)

(f2 250) 250
(f1 250)

Many balls, many delegates

Extending pub-sub

* Now that each ball knows about the wall, the
ball could send the wall other kinds of
messages.

Example: 10-8-communicating objects

* In this version, we'll allow the balls to interact
with the wall directly.

* When a ball is selected, the key event "a"
attracts the wall. It makes the wall move 50%
closer to the ball.

e Similarly "r" repels the wall and moves the
wall 50% farther away.

* Note this relies on the ball handling the
keystrokes.

Protocol for this communication

The ball will have an update-wall-pos method
(as in 10-6-push-model-fixed).

The wall will have a move-to method.

The ball will call the move-to method with the
x-position the wall should move to.

The ball will use its cached version of wall-pos
to calculate the desired new position for the
wall.

move-to

(define SWall<%> (define Wall%
interface (SWidget<%> class* object% (SWall<%>
(interf (SWidget<%>) (class* object% (SWall<%>)
5 SBall<%> -> Int ; the x position of the wall
5 GIVEN: An SBall<%> (init-field [pos INITIAL-WALL-POSITION])

; EFFECT: registers the ball
; to receive position updates
; from this wall.

; RETURNS: the x-position of the ; move-to : Integer -> Void

5 wall ; EFFECT: moves the wall to the specified

register ; position, and reports the new position

; to all registered balls

; Int -> Void (define/public (move-to n)

; EFFECT: moves the wall to the given (set! pos n)

;5 position. Notifies all the (for-each

; registered balls about the change. (lambda (b)

move-to (send b update-wall-pos pos))

balls))

)) The for-eachis
repeated code, and
should probably be

moved to a help
In the interface In the class function

definition.

12

... and in Ball%

;3 KeyEvent -> Void
(define/public (after-key-event kev)
(if selected?
(cond
[(key=? kev "a") (attract-wall)]
[(key=? kev "r") (repel-wall)])
this))

(define (attract-wall)

(send w move-to (- wall-pos (/ (- wall-pos x) 2))))

(define (repel-wall)

(send w move-to (+ wall-pos (/ (- wall-pos x) 2))))

13

Many other protocols could
accomplish the same thing

e Ball could send the wall the distance to move
(either positive or negative), and the wall
could move that distance.

 Or the wall could have two methods, attract
and repel, and the ball could send (/ (- wall-
pos X) 2) to one or the other of the methods.

Yet another protocol (part 1)

Introduce a data type of messages, say
something like:

A MoveMessage is one of
-- (make-move-left NonNegInt)

-- (make-move-right NonNegInt)
Interp: the NonNegInt is the distance to

move

Yet another protocol (part 2)

e Then the receiver method in the wall will

decode the message and move to the right
position.

* This protocol generalizes: you could send the
wall messages in an arbitrary complicated
way.

* For example:

16

Wall choreography

55 A WallDance is a ListOfMoveMessage

;3 WallDance -> Void
(define/public (interpret-dance msg)
(cond
[(empty? msg) this]
[else (begin (interpret-move (first msg))
(interpret-dance (rest msg)))]))

Now the ball can give the wall a whole sequence of instructions in a single message.

WallDance is a programming language!

17

Extending pub-sub

 What if we wanted to deal with multiple
messages?

18

Design #1: Separate subscription lists

* Each kind of message would have its own
subscription list and its own method name

* Good choice if different groups of methods
want to see different sets of messages.

19

Design #2: Single subscription list

e Betterif most classes want to see most of the
same messages.
e All subscribers now see all the messages

 The object can simply ignore the messages it’s
not interestedin.

20

Variations on Design

2

e Could have different receiver methods for

different messages:

— This is what we did in Widget<%>, with after-tick,

after-key-event, etc.

— add-stateful-object was the equivalent of register.
* Or could have a single receiver method, but

complex messages
— sometimes called a "message bus"

— thisis how IP works: each device on the bus just

listens for the messages directed to it.
— this generalizes to large message sets

Summary: Reasons to use publish-
subscribe

 Metaphor:
— "you" are an information-supplier

— You have many people that depend on your
information

* Your information changes rarely, so most of
your dependents' questions are redundant

* You don't know who needs your information

22

Module Summary

* Objects may need to know each other's identity:
— either to pull information from that object
— orto push information to that object
* Publish-subscribe enables you to send information to
objects you don't know about
— objects register with you ("subscribe")

— you send them messages ("publish")when your
information changes

— must agree on protocol for transmission
» eg: (method-name <data>)
* eg: call aregistered closure with some data

— it's up to receiver to decide what to do with the data.

23

Next Steps

* Study the relevant files in the Examples folder:

— 10-6-push-model-fixed.rkt
— 10-7-callbacks.rkt
— 10-8-interacting-objects.rkt

* |f you have questions about this lesson, ask
them on the Discussion Board

e Do Problem Set #10.

24

