
Callbacks	and	Interacting	Objects

CS	5010	Program	Design	Paradigms
"Bootcamp"
Lesson	10.8

1
©	Mitchell	Wand,	2012-2014
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

The	agreement	between	publisher	and	
subscriber

• The	publisher	and	subscriber	must	agree	on	a	
protocol for	exchanging	messages.

• The	protocol	consists	of:
– A	publisher-side	method	for	an	object	to	subscribe	
to	the	messages

– A	subscriber-side	method	that	the	publisher	can	
call	to	deliver	the	messages

– An	agreement	on	what	messages	mean	and	how	
they	are	represented.

2

Information	and	its	
Representation	as	Data	
(again!!)

Doing	pub-sub	without	relying	on	a	
common	method	name	

• You	might	have	several	different	classes	of	subscribers,	
who	want	to	do	different	things	with	a	published	
message.

• Maybe	you	don't	know	the	name	of	the	subscriber's	
receiver	method

• Solution:	instead	of	registering	an	object,	register	a	
function to	be	called.
– f : X -> Void where	X	is	the	kind	of	value	being	
published

• To	publish	a	value,	call	each	of	the	registered	functions
– It's	a	callback!

• These	functions	are	called	delegates or	closures.

3

No	more	update-wall-pos method
(define SBall<%>
(interface (SWidget<%>)

;; ; Int -> Void
;; ; EFFECT: updates the ball's cached value of the

wall's position
;; update-wall-pos

))

4

The	Wall	keeps	a	list	of	callback	
functions

(define Wall%
(class* object% (SWall<%>)
....

;; the list of registered balls
;; ListOf(Ball<%>)
(field [balls empty])

;; the list of registered
;; callbacks
;; ListOf(Int -> Void)
(field [callbacks empty])

;; (Int -> X) -> Int
;; EFFECT: registers the given
;; callback
;; RETURNS: the current position
;; of the wall
(define/public (register c)
(begin
(set! callbacks
(cons c callbacks))

pos))

(define/public (after-drag mx my)
(if selected?
(begin
(set! pos (- mx saved-mx))
(for-each
(lambda (callback)
(send b update-wall-pos pos)
(callback pos))

callbacks))
this))

5

The	wall	keeps	a	list	of	callback	
functions	 instead	of	a	list	of	

Balls.		When	 the	wall	moves,	it	
calls	each	registered	function	
instead	of	 sending	a	message	

to	each	registered	ball.

w = wall1
wall-pos =

ball1

f1

(lambda (n) (set! n))

wall1

(register	f1)

ball1

after-drag

wall-pos =	250

(publish	 250)

(f1	250)

callbacks	=
(list	f1)

250

Publishing	through	a	delegate

6

Whose	wall-pos?

• When	we	write
(lambda	(n)	(set!	wall-pos n))

we	are	referring	to	the	wall-pos field	in	this	
object.

• The	next	slide	shows	a	similar	diagram	
illustrating	what	happens	when	there	are	
two	balls	in	the	world.		

• Each	ball	has	its	own	delegate,	which	refers	
to	its	own	wall-pos field.

7

ball2

f2

(lambda (n) (set! n))

w = wall1
wall-pos =

wall1

(register	f1)

after-drag

wall-pos =	250

(publish	 250)

(f2	250)
(f1	250)

ball1

subscribers	=
(list	f2	f1)

ball2

(register	f2)

250
250

Many	balls,	many	delegates

w = wall1
wall-pos =

ball1

f1

(lambda (n) (set! n))

250

250

250

250

8

Extending	pub-sub

• Now	that	each	ball	knows	about	the	wall,	the	
ball	could	send	the	wall	other	kinds	of	
messages.

9

Example:	10-8-communicating	objects

• In	this	version,	we'll	allow	the	balls	to	interact	
with	the	wall	directly.	

• When	a	ball	is	selected,	the	key	event	"a"	
attracts	the	wall.		It	makes	the	wall	move	50%	
closer	to	the	ball.	

• Similarly	"r"	repels	the	wall	and	moves	the	
wall	50%	farther	away.

• Note	this	relies	on	the	ball	handling	the	
keystrokes.

10

Protocol	for	this	communication

• The	ball	will	have	an	update-wall-posmethod	
(as	in	10-6-push-model-fixed).

• The	wall	will	have	a	move-to method.
• The	ball	will	call	the	move-to	method	with	the	
x-position	the	wall	should	move	to.

• The	ball	will	use	its	cached	version	of	wall-pos
to	calculate	the	desired	new	position	for	the	
wall.

11

move-to
(define SWall<%>
(interface (SWidget<%>)

; SBall<%> -> Int
; GIVEN: An SBall<%>
; EFFECT: registers the ball
; to receive position updates
; from this wall.
; RETURNS: the x-position of the
; wall
register

; Int -> Void
; EFFECT: moves the wall to the given
; position. Notifies all the
; registered balls about the change.
move-to

))

(define Wall%
(class* object% (SWall<%>)

; the x position of the wall
(init-field [pos INITIAL-WALL-POSITION])

...

; move-to : Integer -> Void
; EFFECT: moves the wall to the specified
; position, and reports the new position
; to all registered balls
(define/public (move-to n)
(set! pos n)
(for-each
(lambda (b)
(send b update-wall-pos pos))
balls))

12

In	the	interface In	the	class	
definition.	 	

The	for-each	is	
repeated	code,	and	
should	probably	be	
moved	to	a	help	

function

...	and	in	Ball%
;; KeyEvent -> Void
(define/public (after-key-event kev)
(if selected?
(cond
[(key=? kev "a") (attract-wall)]
[(key=? kev "r") (repel-wall)])

this))

(define (attract-wall)
(send w move-to (- wall-pos (/ (- wall-pos x) 2))))

(define (repel-wall)
(send w move-to (+ wall-pos (/ (- wall-pos x) 2))))

13

Many	other	protocols	could	
accomplish	the	same	thing

• Ball	could	send	the	wall	the	distance	to	move	
(either	positive	or	negative),	and	the	wall	
could	move	that	distance.

• Or	the	wall	could	have	two	methods,	attract
and	repel,	and	the	ball	could	send	(/	(- wall-
pos x)	2) to	one	or	the	other	of	the	methods.

14

Yet	another	protocol	(part	1)

Introduce	a	data	type	of	messages,	say	
something	like:

A MoveMessage is one of
-- (make-move-left NonNegInt)
-- (make-move-right NonNegInt)
Interp: the NonNegInt is the distance to
move

15

Yet	another	protocol	(part	2)

• Then	the	receiver	method	in	the	wall	will	
decode	the	message	and	move	to	the	right	
position.

• This	protocol	generalizes:		you	could	send	the	
wall	messages	in	an	arbitrary	complicated	
way.

• For	example:

16

Wall	choreography
;; A WallDance is a ListOfMoveMessage

;; WallDance -> Void
(define/public (interpret-dance msg)

(cond
[(empty? msg) this]
[else (begin (interpret-move (first msg))

(interpret-dance (rest msg)))]))

Now	the	ball	can	give	the	wall	a	whole	sequence	of	instructions	 in	a	single	message.
WallDance is	a	programming	 language!

17

Extending	pub-sub

• What	if	we	wanted	to	deal	with	multiple	
messages?

18

Design	#1:	Separate	subscription	lists

• Each	kind	of	message	would	have	its	own	
subscription	list	and	its	own	method	name

• Good	choice	if	different	groups	of	methods	
want	to	see	different	sets	of	messages.

19

Design	#2:	Single	subscription	list

• Better	if	most	classes	want	to	see	most	of	the	
same	messages.

• All	subscribers	now	see	all	the	messages
• The	object	can	simply	ignore	the	messages	it’s	
not	interested	in.

20

Variations	on	Design	#2
• Could	have	different	receiver	methods	for	
different	messages:
– This	is	what	we	did	in	Widget<%>,	with	after-tick,	
after-key-event,		etc.

– add-stateful-object	was	the	equivalent	of	register.
• Or	could	have	a	single	receiver	method,	but	
complex	messages
– sometimes	called	a	"message	bus"
– this	is	how	IP	works:		each	device	on	the	bus	just	
listens	for	the	messages	directed	to	it.

– this	generalizes	to	large	message	sets

21

Summary:	Reasons	to	use	publish-
subscribe

• Metaphor:		
– "you"	are	an	information-supplier
– You	have	many	people	that		depend	on	your	
information

• Your	information	changes	rarely,	so	most	of	
your	dependents'	questions	are	redundant

• You	don't	know	who	needs	your	information

22

Module	Summary
• Objects	may	need	to	know	each	other's	identity:
– either	to	pull information	from	that	object
– or	to	push information	to	that	object

• Publish-subscribe	enables	you	to	send	information	to	
objects	you	don't	know	about
– objects	register	with	you	("subscribe")
– you	send	them	messages	 ("publish")	when	your	
information	changes

– must	agree	on	protocol	for	transmission
• eg:	(method-name <data>)
• eg:	call	a	registered	closure	with	some	data

– it's	up	to	receiver	to	decide	what	to	do	with	the	data.

23

Next	Steps

• Study	the	relevant	files	in	the	Examples	folder:
– 10-6-push-model-fixed.rkt
– 10-7-callbacks.rkt
– 10-8-interacting-objects.rkt

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Problem	Set	#10.

24

